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SUMMARY

This report pertains to the development of the Surface-Integral and
Finite Element (SAFE) hybrid method for the analysis of short or physically
small cracks. A brief review of representative research papers on fracture
mechanics of short cracks is provided.

The review is focused on the definitions commonly used in distinguishing
short cracks from long cracks and the differences that are observed during
fatigue crack propagation. The experimental data clearly defines a need to
understand the physics of the behavior of long and short cracks. Reasons
attributable to these differences are discussed.

The formulation of the SAFE method for fracture mechanics is outlined.
Results are provided for long fatigue crack propagation predictions for
titanium specimens. The development of the SAFE method for nonhomogeneity and
plasticity is presented.

Research plans for modelling plasticity by use of shear bands at the
crack tip are also presented.

This annual report covers the period between August 1, 1986 to August 1,
1987. The work reported herein was under sponsorship of the AFOSR under the
technical direction of Dr. G. Haritos.
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1.0 INTRODUCTIONR

Structural components are made from materials which have undergone a
variety of manufacturing processes. Inherently, the materials contain flaws
such as inclusions, voids, porosities, microcracks etc. (refer to Fig. 1,

Ref. 1). The presence of a flaw thus has to be accounted for in the design of
structural components. These flaws can grow, especially under fatigue
loading, and it is important from a damage tolerance point of view to be able
to predict the evolution of these flaws.

Fracture mechanics has been developed and applied successfully for the
analysis of cracks and associated crack propagation. The Griffith-Irwin
linear elastic fracture mechanics (LEFM) theory has been adequate for
modelling cracks in structural components where the elastic K fields dominate
the solution (Ref. 2). The dominance is usually appropriate when the size of
the plastic zone (refer to Fig. 2) is small compared to the length of the
crack and other dimensions of the body.

The development of LEFM has been followed by the development of elastic-
plastic fracture mechanics (EPFM) with the pioneering work of Hult and
McClintock (Ref. 3), Rice (Ref. 4) and Hutchinson (Ref. 5). EPFM is
applicable and needed especially for high toughness and low strength materials
vwherein the elastic K dominance is not satisfied and has to be replaced by J
dominance, J being Rice's path independent integral representing the energy
release rate. The development of J and associated integrals such as the
Wilson-Yu modified J integral (Ref. 6) which account for thermal strains are
however based on the deformation theory of plasticity or non-linear elasticity;
thus J cannot be applied rigorously after unloading as the crack grows.

The interest in fatigue propagation of short cracks has been motivated by
the experimental studies (Ref. 7) which have shown that the growth rate of
short fatigue cracks is greater under the same nominal crack driving force
than the growth rate for long cracks. It is thus very important to be able to
predict growth of these short cracks, as application of long crack fatigue
growth analysis will not be applicable and failures may not be predicted.

In this report, a brief description is given for the Surface-Integral and
Finite Element (SAFE) hybrid method that has been developed for effective
modeling of crack propagation in structural components. Some representative
results for long cracks are provided. The development for plasticity along
with results is presented.

The motivation for developing lumped plasticity models using shear bands
at the crack tip is discussed. The development of the elastic-plastic
capability of SAFE is aimed at modelling short (and long) cracks and deter-
mining the effect of the plastic zone on crack closure.
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2.0 BRIEF REVIEW OF THE LITERATURE

An excellent review of the experimental and analytical work performed on
propagation of short fatigue cracks has been provided in the paper by Suresh
and Ritchie (Ref. 7). The fatigue process itself is comprised of formation of
microcracks due to cyclic damage, coalescence of these microcracks into
macrocracks, the subcritical growth of these cracks and subsequent failure of
the structural component. The initiation of a crack is a matter of definition
as flaws are always present in materials. Initiation in an engineering sense
is usually related to the size of the crack which can be readily detected
under low magnification. The number of cycles, N;, to initiation of this
crack in an engineering sense has been used to define "life" of a structural
component. However, this can be a conservative approach and the "damage
tolerance" concept reduces this conservatism by allowing for number of cycles
Np for subcritical crack growth along with appropriate inspection intervals
(refer to Fig. 3). The total fatigue life Ny is given by

Np = N; + Np 1)

N; is obtained empirically while Np is obtained either in a test or by
analysis. For design purposes, Np is usually obtained by an analysis which
has been well calibrated with actual specimen data. Np is obtained by using
a LEFM approach and the Paris' equation, given below or a suitable variation
such as the Forman, Wheeler, Willenborg (Refs. 2, 7) models.

48 = c(ar)™ (2)

crack length

number of cycles

the stress intensity factor range
material constants.

2,1 DEFINITIONS OF VARIOUS TYPES OF SHORT CRACKS

Short cracks have been defined in a number of ways. The definitions
given below are from reference 7.

(1) Cracks which are of a length comparable to the size of the
microstructure, e.g., of the order of the grain size,

LAWLAL NG W W .i.o Al



(2) Cracks which are of a length comparable to the scale of local 4
plasticity, typically < 1072 mm in ultrahigh strength materials and b ):
£ 0.1-]1 mm in low strength materials, Sl

In this research effort, the second and third definitions will be used sty
for defining short cracks. Also since a two dimensional analysis is being i)
utilized, the crack can be long in the thickness direction. For the first ot
type of crack, anisotropy of the grain will be important; for the ones defined :
by (2) and (3) EPFM will be necessary for analysis as the elastic K fields may By
not dominate at the crack tip. ':5?

I (3) Cracks which are physically small < 0.5-1 mm. ﬁﬁf

2.2 DIFFERENCES IN OBSERVED RESULTS FOR LONG AND SHORT CRACKS @

The experimental work performed by various researchers (Refs. 7-9) has ’&gﬁ
shown that small cracks grow faster than long cracks and application of the W
Paris equation (2) for the same AK gives incorrect results and can lead to \
overestimates of life (refer to Fig. 4). As can be seen in the figure, the
threshold stress intensity factor is different for short cracks than long K‘ﬂq
cracks; also the short crack may arrest or behave as a long crack after it RGO,
has grown sufficiently. a0
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3.0 SURFACE-INTEGRAL ANKD FINITE ELEMENT (SAFE) HYBRID
METHOD FOR FRACTURE MECHANICS

The Surface-Integral and Finite Element Hybrid method is a very effective
method that has been developed for modelling evolution of fractures in finite
continua. It combines the best features of the Surface-Integral method which
uses dislocations (displacement discontinuities) to model the fracture; and
the finite element method for modelling the uncracked body and any
inhomogeneity and volume effects. A thesis (Ref. 10) and several papers have
been written on this subject (Refs. 11-15).

3.1 FORMOUOLATION OF THE SAFE METHOD FOR LINEAR ANALYSIS

The details of development of the SAFE method are given in references 1l1-
12. The governing equations given below are derived using linear super-
position of the Surface-Integral and Finite Element models (Fig. 5) ensuring
appropriate traction and displacement matching at the boundaries.

B OER = 5 NR UR W o

-
be

= (3)

where,

= Stiffness matrix of the plate without the crack

= Coefficient matrix for the singular integral equation formulation
= Boundary force correction matrix

= Stress feedback matrix

Displacement matrix for the singular integral equation formulation
= Total displacement vector at finite element nodes

= Amplitude of the dislocation density.

= Applied nodal force vector

= Applied traction vector along the crack

T2 A X =B S

HHEmatrtrooOR
"

In Fig. 5, R¢ is the boundary force
R® = [6]{F} (4)

and T¢ is the traction along the crack line

TR = B &8

¢ = [s]{uFE} (5)

4 <
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The governing equaticns for the FE and SI models are:

[K]{vFE} = R - RS (6)
and
[c}{F} = T - 1¢ N

Also the total displacement field is given by,

U = uFE + ySI (8)
where,
UFE = Finite element displacements for the plate without the crack
uSl = surface integral displacements for a crack in an infinite domain

uSt = [L){F} (9)

using Eqs. (4) through (9) results in the coupled governing Eq. (3) for the
SAFE hybrid method.

Results for a wide range of representative problems are given in
references 10-15. A typical result for mixed mode fatigue propagation of a
long crack in a titanium specimen is given in Fig. 6.

3.2 FORMULATIOR FOR MATERIALLY NONLINEAR ANALYSIS

The formulation of the SAFE method for material nonhomogeneity is first
considered to motivate the development for nonlinear analysis.

3.2.1 Formulation for Nonhomogeneity

In the development of Eq. (3) the material considered was isotropic and
homogeneous. Nonhomogeneity in the uncracked body can be easily represented
by using appropriate material properties for the finite elements. 1In the
surface-integral model the nonhomogeneity cannot be directly included.
However, similar to the boundary force correction vector R®, a volume
correction factor R°™ can be calculated and applied to the finite element
mesh. Thus the modified governing equations for nonhomogeneity are given by

’

K G-(KL-K) U R
= (10)
s c-SL F T
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The additional K term appearing in Eq. (10) is obtained from

[]{uFE} = R - R® - ROTD (1
where,
RE™ = Additional correction to the load vector due to the presence of
nonhomogeneity
cnh v
RS = [K]{F} (12)
REOD = 2; f 8T (1 - DBDA-I) {oASI}dv(“‘) (13)
V(@)
i3 = Nonhomogeneity correcton matrix

D,,Dp= Constitutive matrices, Subscript A and B correspond to the
material used for the influence function and the nonhomogeneity

aASI = Stresses at the finite element Gauss points due to the surface
integral model for homogeneous media.

The summation sign in Eq. (13) extends over all the finite elements.
This method has been applied to a problem of a crack in a bi-material plate
and good agreement with analytical solutions has been obtained (Refs. 10, 14).

3.2.2 Formulation for Material Nonlinearity

The equations developed for modelling nonhomogeneity are utilized to form
the governing equations given below for plasticity via incremental super-
position of the surface-integral and finite element models and using
equilibrium iteration.

auf i t+atp _ t+atp(i-1)
- . (14)
. oc* AF tHAty t+Atm(1-1)
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where "

Initial stiffness matrix at time t = 0

°
=
[

°
2]
n

Initial boundary force matrix at time t = 0 (G* = °G-°KL)

°
w
L}

Initial stress feedback matrix at time t = 0.

1ﬁf?%8;. y

X

‘k"l

Initial coefficient matrix at time t = 0 (C* = °c-°sSL)

°
(9]
L}

&
[N
]

Incremental total displacement vector at iteration i ,b;

AF? = Incremental dislocation density amplitude vector at iteration Ak,
i &0

t"’AtR

Applied nodal force vector at time t+At

t+atg(i-1)x Internal nodal force vector corresponding to the (total)

Cauchy stresses at the Gauss points at iteration i-l

t+Aty Applied traction vector along the crack at time t+At

t+AtT(1-1)= Internal traction vector corresponding to the (total) Cauchy

stresses at the Gauss points at iteration i-l.

The internal nodal force vector and traction vector are calculated as f%;
follows (for both elasticity and plasticity): e
,‘.'.\
NN
I'.I
Ay i ° - T P
t+atp(i-1) ._./B'r t+AtTFE(1 Day + ("¢ + tratgi 1) t+atp(i-1) (16) e
v ’ J
A
and, R
S
tHatgi-1 Nonhomogeneity correction matrix (for plasticity) at time jiiﬁ
. » - 8
t+At for iteration (i-1). “r
75
RS
t+atq(i-1), t+AtTFE(1—1) + octtatp(i-1) (17) NN
where, N
T
t+at_ (i-1) . . ®
TFE = Cauchy stresses (due to only the finite element continuous -
. . . . N
stress field) at time t+At for iteration (i-1). I
LA
t+Aty (i-1) . . . w2
FE = Smoothed tractions (only continuous stress field) at the a0
collocation points (obtained from Gauss point stresses) at b

time t+At for iteration (i-1l).
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Analysis of a center cracked panel (Fig. 7) for a bi-linear elastic
plastic material model has been performed. Results obtained for long cracks
by the SAFE method are compared with Hutchinson's (Ref. 5) asymptotic results
and reasonable agreement has been obtained (Table 1). The formulation given
by Eq. (14) is being further enhanced and convergence issues are being worked
out.

At present the model as shown in Fig. 7 still needs use of a large number
of {inite elements for modelling plasticity. To retain all the best features
of the SAFE method it is desirable to capture the plasticity at the crack tip
by special schemes. One way of modelling plasticity at the crack tip is by
means of shear bands at the crack tips. This is discussed in the following
section.

3.3 MODELLING PLASTICITY AT THE CRACK TIP BY USE OF SHEAR BANDS

There are various models such as the Dugdale model (for mode I) and the
Bilby-Cottrell-Swinden model (for modes II and III) which have been used to
model plastic yielding at the crack tip (Ref. 2). The Dugdale model uses an
additional crack length with a yield stress oy acting on it to represent the
deviation from the elastic singular behavior. Similarly the Bilby-Cottrell-
Swinden model uses a distribution of dislocations to model the slip in the
additional crack length, for modes II and II. For a crack loaded in uniform
tension, for example, it has been reported by Vitek (Ref. 16) and other
researchers (Refs. 17-19) that the yielding can be modelled by inclined slip
planes at the crack tip. This is like a 'lumped' plasticity model that uses
dislocation theory and is suitable for the SAFE method. These models are
being studied and current research is aimed at incorporating these in the SAFE
code. Particularly for short cracks it is felt that these 'lumped' models
will be advantageous.

3.4 FUTURE RESEARCH OBJECTIVES
The current objective is to develop the inclined slip-plane model for

plasticity, proceed with modelling cracks emanating from a notch and then
develop and implement algorithms for elastic-plastic crack propagation.
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Table 1. Elastic and Plastic Stress Intensity Factors

: elw 1* H** 1
E Eq Yield K K,P Ky KP
p— — p— H
\ (psi) (psi) (psi) ov/Na o/ra or/na Rt

0.3 x 108 0.15 x 108 3500 1.206 0.85 0.884 0.96
0.3 x 108 0.1 x 108 3500 1.206 0.652 0.735 0.89
0.3 x 108 0.3 x 107 3500 1.215 0.387 0.416 0.93

0.3 x 108 0.1 x 107 3500 1.198 0.208 0.238 0.87

-
\
Y

s B8 o SN B &3 S5 OB

* GSAFE analysis
** Based on Hutchinson's bi~linear results.
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Figure 1. Schematic showing relation between ‘‘initiation’’ life and
“propagation’’ life [1].
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Figure 2. Crack tip plastic zones for various conditions.
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log AK—

13

Figure 4. Typical fatigue crack propagation rates (da/dN) for long and short
cracks as function of stress intensity factor range AK [Ref. 7].
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Figure 6. Fatigue propagation of a long crack in titanium.
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Figure 7. Center cracked test specimen (quarter geometry shown).
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